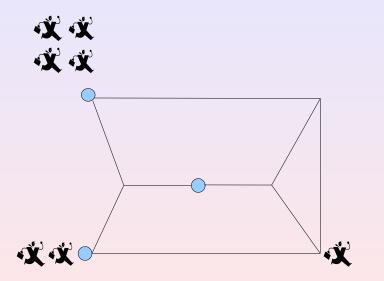
Deux problèmes sur les réseaux

1er octobre 2008

Ecole des Ponts, France

Affectation dynamique du trafic : il y a un équilibre ! avec Nicolas Wagner.

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ● ● ● ● ●

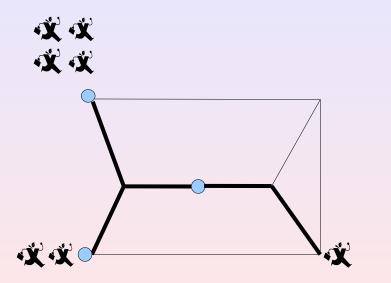


(日)

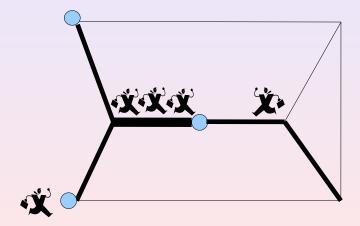
仪仪 × ×

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・ ・

臣



(日)



(日)

Supply A directed graph G = (V, A), a *cost function* $c_a : \mathbb{R}_+ \to \mathbb{R}_+$ for each $a \in A$. Assumptions : c_a is non-decreasing and continuous and G is strongly connected.

Demand A demand function $\boldsymbol{b} : \boldsymbol{V} \times \boldsymbol{V} \to \mathbb{R}_+$. Realization A flow $\boldsymbol{x} : \boldsymbol{R} \to \mathbb{R}_+$ where $\boldsymbol{R} = (\boldsymbol{R}_{o,d})_{(o,d) \in \boldsymbol{V} \times \boldsymbol{V}}$, such that $\sum_{\boldsymbol{r} \in \boldsymbol{R}_{o,d}} \boldsymbol{x}(\boldsymbol{r}) = \boldsymbol{b}(o, d)$, with $\boldsymbol{R}_{o,d}$ being the set of all $\boldsymbol{o}-\boldsymbol{d}$ route of \boldsymbol{G} .

Equilibrium Whenever $\pmb{r}, \pmb{r}' \in \pmb{R}_{\pmb{o},\pmb{d}}$, we have

$$\mathbf{x}(\mathbf{r}) > \mathbf{0} \Rightarrow \sum_{\mathbf{a} \in \mathbf{r}} \mathbf{c}_{\mathbf{a}}(\mathbf{x}_{\mathbf{a}}) \leq \sum_{\mathbf{a} \in \mathbf{r}'} \mathbf{c}_{\mathbf{a}}(\mathbf{x}_{\mathbf{a}}),$$

(日)

where $\mathbf{x}_a := \sum_{\mathbf{r} \in \mathbf{R}: a \in \mathbf{r}} \mathbf{x}(\mathbf{r})$ (Wardrop).

Supply A directed graph G = (V, A), a *cost function* $c_a : \mathbb{R}_+ \to \mathbb{R}_+$ for each $a \in A$. Assumptions : c_a is non-decreasing and continuous and G is strongly connected.

Demand A *demand function* $\boldsymbol{b} : \boldsymbol{V} \times \boldsymbol{V} \rightarrow \mathbb{R}_+$.

Realization A flow $x : \mathbf{R} \to \mathbb{R}_+$ where $\mathbf{R} = (\mathbf{R}_{o,d})_{(o,d) \in V \times V}$, such that $\sum_{\mathbf{r} \in \mathbf{R}_{o,d}} x(\mathbf{r}) = b(o, d)$, with $\mathbf{R}_{o,d}$ being the set of all $\mathbf{o}-\mathbf{d}$ route of \mathbf{G} .

Equilibrium Whenever $r, r' \in R_{o,d}$, we have

$$\mathbf{x}(\mathbf{r}) > \mathbf{0} \Rightarrow \sum_{\mathbf{a} \in \mathbf{r}} \mathbf{c}_{\mathbf{a}}(\mathbf{x}_{\mathbf{a}}) \leq \sum_{\mathbf{a} \in \mathbf{r}'} \mathbf{c}_{\mathbf{a}}(\mathbf{x}_{\mathbf{a}}),$$

・ロト ・雪 ・ ・ ヨ ・ ・ ヨ ・

where $\mathbf{x}_a := \sum_{\mathbf{r} \in \mathbf{R}: a \in \mathbf{r}} \mathbf{x}(\mathbf{r})$ (Wardrop).

Supply A directed graph G = (V, A), a *cost function* $c_a : \mathbb{R}_+ \to \mathbb{R}_+$ for each $a \in A$. Assumptions : c_a is non-decreasing and continuous and G is strongly connected.

Demand A *demand function* $\boldsymbol{b} : \boldsymbol{V} \times \boldsymbol{V} \rightarrow \mathbb{R}_+$.

Realization A flow $\mathbf{x} : \mathbf{R} \to \mathbb{R}_+$ where $\mathbf{R} = (\mathbf{R}_{o,d})_{(o,d) \in \mathbf{V} \times \mathbf{V}}$, such that $\sum_{\mathbf{r} \in \mathbf{R}_{o,d}} \mathbf{x}(\mathbf{r}) = \mathbf{b}(\mathbf{o}, \mathbf{d})$, with $\mathbf{R}_{o,d}$ being the set of all $\mathbf{o}-\mathbf{d}$ route of \mathbf{G} .

Equilibrium Whenever $r, r' \in R_{o,d}$, we have

$$\mathbf{x}(\mathbf{r}) > \mathbf{0} \Rightarrow \sum_{\mathbf{a} \in \mathbf{r}} \mathbf{c}_{\mathbf{a}}(\mathbf{x}_{\mathbf{a}}) \leq \sum_{\mathbf{a} \in \mathbf{r}'} \mathbf{c}_{\mathbf{a}}(\mathbf{x}_{\mathbf{a}}),$$

where $\mathbf{x}_a := \sum_{\mathbf{r} \in \mathbf{R}: a \in \mathbf{r}} \mathbf{x}(\mathbf{r})$ (Wardrop).

Supply A directed graph G = (V, A), a cost function $c_a : \mathbb{R}_+ \to \mathbb{R}_+$ for each $a \in A$. Assumptions : c_a is non-decreasing and continuous and G is strongly connected. Demand A *demand function* $\boldsymbol{b} : \boldsymbol{V} \times \boldsymbol{V} \rightarrow \mathbb{R}_+$. Realization A flow $x : \mathbf{R} \to \mathbb{R}_+$ where $\mathbf{R} = (\mathbf{R}_{o,d})_{(o,d) \in V \times V}$, such that $\sum x(r) = b(o, d)$, with $R_{o,d}$ being $r \in R_{o,d}$ the set of all **o**-**d** route of **G**. Equilibrium Whenever $r, r' \in R_{o,d}$, we have

$$\mathbf{x}(\mathbf{r}) > \mathbf{0} \Rightarrow \sum_{\mathbf{a} \in \mathbf{r}} \mathbf{c}_{\mathbf{a}}(\mathbf{x}_{\mathbf{a}}) \leq \sum_{\mathbf{a} \in \mathbf{r}'} \mathbf{c}_{\mathbf{a}}(\mathbf{x}_{\mathbf{a}}),$$

◆□▶ ◆圖▶ ◆臣▶ ◆臣▶ ─臣

where $x_a := \sum_{r \in \mathbf{R}: a \in r} x(r)$ (*Wardrop*).

Theorem

There is always an equilibrium. Moreover, the values $c_a(\sum_{r \in \mathbf{R}: a \in \mathbf{r}} \mathbf{x}(r))$ at equilibrium are unique.

Formulation as a convex program \rightarrow computable.

This model has a limited significance :

the time needed to travel along the route is not modelled. Each user occupies the whole route continuously.

(日)

→ need of dynamic traffic assignment model.

This model has a limited significance :

the time needed to travel along the route is not modelled. Each user occupies the whole route continuously.

イロト イヨト イヨト イヨト

 \rightarrow need of *dynamic traffic assignment model*.

Since the 70's, several models has been proposed, for instance :

- Vickrey (1969)
- Merchant and Nemhauser (1978)
- Friez and al. (1989)
- 90's : Leurent (LADTA), Bellei, Gentile and Papola, Akamatsu and Kuwahara

イロト イヨト イヨト イヨト

Roughly speaking, the models are such that

Time interval I = [0, H].

Users are *dynamic flows* : $\mathbf{x} : \mathbf{R} \times \mathbf{I}$. The quantity $\mathbf{x}(\mathbf{r}, \mathbf{h})$ is the number of users choosing the route \mathbf{r} at time \mathbf{h} .

 $y_a: I \to \mathbb{R}_+$. The quantity $y_a(h)$ is the number of users entering the arc *a* at time *h*.

Useful notation :

$$X_r(h) := \int_{h'=0}^h x(r, h')$$
 and $Y_a(h) := \int_{h'=0}^h y_a(h')$

・ロ・ ・ 四・ ・ 回・ ・ 回・

(cumulated flow).

Supply A strongly connected directed graph G = (V, A), a *arc travel time function* t_a for each $a \in A$ such that $t_a(Y_a)$ is a $I \to \mathbb{R}_+$ continuous map, depending continuously of the cumulated flow Y_a .

Demand A *demand function* $\boldsymbol{b} : \boldsymbol{V} \times \boldsymbol{V} \times \boldsymbol{I} \rightarrow \mathbb{R}_+$.

Realization $\sum_{r \in R_{o,d}} x(r, h) = b(o, d, h)$ for all $(o, d) \in V \times V$ and $h \in I$.

Equilibrium Whenever $r, r' \in R_{o,d}$, we have

 $\mathbf{x}(\mathbf{r},\mathbf{h}) > \mathbf{0} \Rightarrow t_{\mathbf{r}}(\mathbf{\vec{X}})(\mathbf{h}) \leq t_{\mathbf{r}'}(\mathbf{\vec{X}})(\mathbf{h}),$

where for $r = a_1 \dots a_n$, we have $t_r(\tilde{X})(h) := \sum_{i=1}^n t_{a_i}(Y_{a_i})(h_i)$ with $Y_{a_i} := \phi_{a_i}(X)$ and $h_1 := h$ and $h_{i+1} := h_i + t_{a_i}(Y_{a_i})(h_i)$ for $i = 1, a_i, a_i, a_i$, $a_i, a_i \in 1$, $a_i \in 2$, and

Supply A strongly connected directed graph G = (V, A), a *arc travel time function* t_a for each $a \in A$ such that $t_a(Y_a)$ is a $I \to \mathbb{R}_+$ continuous map, depending continuously of the cumulated flow Y_a .

Demand A *demand function* $\boldsymbol{b} : \boldsymbol{V} \times \boldsymbol{V} \times \boldsymbol{I} \rightarrow \mathbb{R}_+$.

Realization $\sum_{r \in R_{o,d}} x(r,h) = b(o,d,h)$ for all $(o,d) \in V \times V$ and $h \in I$. Equilibrium Whenever $r, r' \in R$, two have

 $\mathbf{x}(\mathbf{r},\mathbf{h}) > \mathbf{0} \Rightarrow \mathbf{t}_{\mathbf{r}}(\mathbf{\vec{X}})(\mathbf{h}) \leq \mathbf{t}_{\mathbf{r}'}(\mathbf{\vec{X}})(\mathbf{h}),$

where for $r = a_1 \dots a_n$, we have $t_r(\tilde{X})(h) := \sum_{i=1}^n t_{a_i}(Y_{a_i})(h_i)$ with $Y_{a_i} := \phi_{a_i}(X)$ and $h_1 := h$ and $h_{i+1} := h_i + t_{a_i}(Y_{a_i})(h_i)$ for i = 1, 25, 39, -1, 25, 39

Supply A strongly connected directed graph G = (V, A), a *arc travel time function* t_a for each $a \in A$ such that $t_a(Y_a)$ is a $I \to \mathbb{R}_+$ continuous map, depending continuously of the cumulated flow Y_a .

Demand A *demand function* $\boldsymbol{b} : \boldsymbol{V} \times \boldsymbol{V} \times \boldsymbol{I} \rightarrow \mathbb{R}_+$.

Realization $\sum_{\substack{r \in R_{o,d} \\ and \ h \in I}} x(r, h) = b(o, d, h)$ for all $(o, d) \in V \times V$

Equilibrium Whenever $r, r' \in R_{o,d}$, we have

 $\mathbf{x}(\mathbf{r},\mathbf{h}) > \mathbf{0} \Rightarrow t_{\mathbf{r}}(\mathbf{\vec{X}})(\mathbf{h}) \leq t_{\mathbf{r}'}(\mathbf{\vec{X}})(\mathbf{h}),$

where for $r = a_1 \dots a_n$, we have $t_r(\vec{X})(h) := \sum_{i=1}^n t_{a_i}(Y_{a_i})(h_i)$ with $Y_{a_i} := \phi_{a_i}(X)$ and $h_1 := h$ and $h_{i+1} := h_i + t_{a_i}(Y_{a_i})(h_i)$ for i = 1, 25, 39, -1, 25, 39

Supply A strongly connected directed graph G = (V, A), a *arc travel time function* t_a for each $a \in A$ such that $t_a(Y_a)$ is a $I \to \mathbb{R}_+$ continuous map, depending continuously of the cumulated flow Y_a .

Demand A demand function $\boldsymbol{b}: \boldsymbol{V} \times \boldsymbol{V} \times \boldsymbol{I} \rightarrow \mathbb{R}_+$.

Realization $\sum_{r \in R_{o,d}} x(r, h) = b(o, d, h)$ for all $(o, d) \in V \times V$ and $h \in I$.

Equilibrium Whenever $r, r' \in R_{o,d}$, we have

$$\mathbf{x}(\mathbf{r},\mathbf{h}) > \mathbf{0} \Rightarrow t_{\mathbf{r}}(\mathbf{\vec{X}})(\mathbf{h}) \leq t_{\mathbf{r}'}(\mathbf{\vec{X}})(\mathbf{h}),$$

where for $r = a_1 \dots a_n$, we have $t_r(\vec{X})(h) := \sum_{i=1}^n t_{a_i}(Y_{a_i})(h_i)$ with $Y_{a_i} := \phi_{a_i}(X)$ and $h_1 := h$ and $h_{i+1} := h_i + t_{a_i}(Y_{a_i})(h_i)$ for $i = 1, \dots, n-1$.

The Y_a can be computed from the t_a knowing all X_r (under some assumptions).

Existence of an equilibrium?

In general, it is an open question.

- Zhu and Marcotte prove an equilibrium for Friez's model (with a stronger assumptions on travel time).
- Ladta : Unknown.
- Lindsey + Leurent, Wagner studied time departure choice on one arc (Vickrey model) : their is an equilibrium.

(日)

The Y_a can be computed from the t_a knowing all X_r (under some assumptions).

Existence of an equilibrium?

In general, it is an open question.

- Zhu and Marcotte prove an equilibrium for Friez's model (with a stronger assumptions on travel time).
- Ladta : Unknown.
- Lindsey + Leurent, Wagner studied time departure choice on one arc (Vickrey model) : their is an equilibrium.

・ロ・ ・ 四・ ・ 回・ ・ 日・

Our result

- a general model with minimal assumption : continuity, fifoness (in a weak form), causality, no infinite speed.
- existence of an equilibrium that contains all previous results.

・ロト ・ 日 ・ ・ 回 ・ ・ 日 ・

크

R : set of *routes*, I := [0, H] time interval.

 $\mathcal{M}(\mathbf{R} \times \mathbf{I})$: set of measures on $\mathbf{R} \times \mathbf{I}$ (choice of time departure allowed).

 \mathcal{T}_r : set of continuous maps $\mathcal{M}(\mathbf{R} \times \mathbf{I}) \to \mathcal{C}(\mathbb{R}, \mathbb{R})$ ($t_r \in \mathcal{T}_r$ is such that $t_r(\vec{X})(h)$ gives the time needed to traverse the route r).

user : characterized by a function $\boldsymbol{u} : (\bigcup_{r \in \boldsymbol{R}} \mathcal{T}_r) \times \boldsymbol{R} \times \boldsymbol{I} \to \mathbb{R}$ (that is upper semicontinuous in \boldsymbol{r} and \boldsymbol{h} , and continuous in the travel times, (the *utility-function*) : $\boldsymbol{u}(\vec{t}, r, h)$: a choice $(r, h) \mapsto$ the payoff, when route travel times are $\vec{t} := t_{r_1}, t_{r_2}, \ldots,$.

 \mathcal{U} : space of users \boldsymbol{u} .

A *traffic game* is a measure U on \mathcal{U} . Number of users : $N := U(\mathcal{U})$.

A *realization* of the traffic game is a measure on $\mathcal{U} \times \mathbf{R} \times \mathbf{I}$. Denote $\mathbf{t}_{r_1}, \mathbf{t}_{r_2}, \dots$ by $\mathbf{\vec{t}}$.

Given a traffic game U, a realization D is a *Cournot-Nash* equilibrium if we have $D_{\mathcal{U}} = U$ and

$$D \quad \{(u, r, h): \text{ for each } (r', h') \in \mathbb{R} \times I, \\ u(\vec{t}(D_{\mathbb{R} \times I}), r, h) \ge u(\vec{t}(D_{\mathbb{R} \times I}), r', h') \} = \mathbb{N}$$

・ロト ・ 日 ・ ・ 回 ・ ・ 日 ・

 $D_{R \times I}$ is exactly the cumulated flows **X**. Set $X_r(J) := D_{R \times I}(\{r\} \times J).$

Khan-Mas-Colell's theorem tells us that there is a Nash equilibrium, provided that the utility function are continuous in the realization of the game (=here the travel times).

For traffic assignement : $D_{R \times I} \mapsto u(\overline{t}(D_{R \times I}), \cdot, \cdot)$ must be continuous.

(日)

Reformulation : Our purpose : prove that $oldsymbol{X} \mapsto oldsymbol{t}(oldsymbol{X})$ is continuous.

Khan-Mas-Colell's theorem tells us that there is a Nash equilibrium, provided that the utility function are continuous in the realization of the game (=here the travel times).

For traffic assignment : $D_{R \times I} \mapsto u(\vec{t}(D_{R \times I}), \cdot, \cdot)$ must be continuous.

・ロト ・ 日 ・ ・ 回 ・ ・ 日 ・

Reformulation : Our purpose : prove that $ec{X}\mapstoec{t}(ec{X})$ is continuous.

Khan-Mas-Colell's theorem tells us that there is a Nash equilibrium, provided that the utility function are continuous in the realization of the game (=here the travel times).

For traffic assignment : $D_{R \times I} \mapsto u(\vec{t}(D_{R \times I}), \cdot, \cdot)$ must be continuous.

・ロ・ ・ 四・ ・ 回・ ・ 回・

Reformulation : Our purpose : prove that $\vec{X} \mapsto \vec{t}(\vec{X})$ is continuous.

Given *t_a*, the *arc exit time* function is

 $H_a(Y)(h) := h + t_a(Y)(h)$ for $Y \in \mathcal{M}(\mathbb{R})$ and $h \in \mathbb{R}$

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ● ● ● ● ●

Continuity $H_a : \mathcal{M}(\mathbb{R}) \to \mathcal{C}(\mathbb{R})$ is continuous.

Limited speed there exists $t_{\min} > 0$ such that for all $Y \in \mathcal{M}(\mathbb{R})$ and all $h \in \mathbb{R}$, we have $H_a(Y)(h) > h + t_{\min}$. Fifo Let $h_1 < h_2$ in \mathbb{R} and let $Y \in \mathcal{M}(\mathbb{R})$. Whenever $Y[h_1, h_2] \neq 0$, we have $H_a(Y)(h_1) < H_a(Y)(h_2)$. Causality For all $h \in \mathbb{R}$ and $Y \in \mathcal{M}(\mathbb{R})$, we have $H_a(Y|_h)(h) = H_a(Y)(h)$.

・ロ・・ (日・・ ほ・・ (日・)

Continuity $H_a : \mathcal{M}(\mathbb{R}) \to \mathcal{C}(\mathbb{R})$ is continuous. Limited speed there exists $t_{\min} > 0$ such that for all $Y \in \mathcal{M}(\mathbb{R})$ and all $h \in \mathbb{R}$, we have $H_a(Y)(h) > h + t_{\min}$. Fifo Let $h_1 < h_2$ in \mathbb{R} and let $Y \in \mathcal{M}(\mathbb{R})$. Whenever $Y[h_1, h_2] \neq 0$, we have $H_a(Y)(h_1) < H_a(Y)(h_2)$. Causality For all $h \in \mathbb{R}$ and $Y \in \mathcal{M}(\mathbb{R})$, we have $H_a(Y|_h)(h) = H_a(Y)(h)$.

Continuity $H_a : \mathcal{M}(\mathbb{R}) \to \mathcal{C}(\mathbb{R})$ is continuous. Limited speed there exists $t_{\min} > 0$ such that for all $Y \in \mathcal{M}(\mathbb{R})$ and all $h \in \mathbb{R}$, we have $H_a(Y)(h) > h + t_{\min}$. Fifo Let $h_1 < h_2$ in \mathbb{R} and let $Y \in \mathcal{M}(\mathbb{R})$. Whenever $Y[h_1, h_2] \neq 0$, we have $H_a(Y)(h_1) < H_a(Y)(h_2)$. Causality For all $h \in \mathbb{R}$ and $Y \in \mathcal{M}(\mathbb{R})$, we have $H_a(Y|_h)(h) = H_a(Y)(h)$.

Continuity $H_a : \mathcal{M}(\mathbb{R}) \to \mathcal{C}(\mathbb{R})$ is continuous. Limited speed there exists $t_{\min} > 0$ such that for all $Y \in \mathcal{M}(\mathbb{R})$ and all $h \in \mathbb{R}$, we have $H_a(Y)(h) > h + t_{\min}$. Fifo Let $h_1 < h_2$ in \mathbb{R} and let $Y \in \mathcal{M}(\mathbb{R})$. Whenever $Y[h_1, h_2] \neq 0$, we have $H_a(Y)(h_1) < H_a(Y)(h_2)$. Causality For all $h \in \mathbb{R}$ and $Y \in \mathcal{M}(\mathbb{R})$, we have $H_a(Y|_h)(h) = H_a(Y)(h)$.

Let \vec{Y}_a be in $\mathcal{M}(\mathbf{R} \times \mathbb{R})$; the flow of users following route \mathbf{r} and leaving the arc \mathbf{a} on the time subset \mathbf{J} is :

$$\psi_a^r(\vec{Y}_a)(J) := \psi_a(\vec{Y}_a)(\{r\} \times J) := \begin{cases} Y_a^r(H_a(Y_a)^{-1}(J)) & \text{if } a \in r \\ 0 & \text{if not.} \\ (1) \end{cases}$$

An *outflow* of \vec{X} is a measure $Y_a := \sum_r Y_a^r$ on \mathbb{R} such that for every $r = a_1 a_2 ... a_n$:

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ● ● ● ● ●

•
$$Y_{a_1}^r = X_r$$

• $Y_{a_i}^r = \psi_r^{a_{i-1}}(\vec{Y}_{a_{i-1}})$ for $i = 2...n$
• $Y_a^r = 0$ if $a \notin r$

Uniqueness and continuity of the outflow

Proposition

Given \vec{X} , there exists a unique outflow Y_a . Moreover, the map $\phi_a : \vec{X} \mapsto Y_a$ is continuous.

Continuity of t_r is proved.

Indeed

$$t_r(\vec{X})(h) := \sum_{i=1}^n t_{a_i}(Y_{a_i})(h_i)$$

with $h_1 := h$ and $h_{i+1} := h_i + t_{a_i}(Y_{a_i})(h_i)$ for i = 1, ..., n-1 can be rewritten :

 $t_r(\vec{X})(h) = \left(H_{a_n}\left(\phi_{a_n}(\vec{X})\right) \circ \ldots \circ H_{a_1}\left(\phi_{a_1}(\vec{X})\right)\right)(h) - h$ for all $h \in I$

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・

Continuity of t_r is proved. Indeed

$$t_r(\vec{X})(h) := \sum_{i=1}^n t_{a_i}(Y_{a_i})(h_i)$$

with $h_1 := h$ and $h_{i+1} := h_i + t_{a_i}(Y_{a_i})(h_i)$ for i = 1, ..., n-1 can be rewritten :

$$t_r(\vec{X})(h) = \left(H_{a_n}\left(\phi_{a_n}(\vec{X})\right) \circ \ldots \circ H_{a_1}\left(\phi_{a_1}(\vec{X})\right)\right)(h) - h \quad \text{for all } h \in$$

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ● ● ● ● ●

Continuity of the $t_r \Rightarrow$ continuity of the utility function $u(t_r, \cdot, \cdot) \Rightarrow$ we can apply the theorem.

Theorem

Given a directed graph $\mathbf{G} = (\mathbf{V}, \mathbf{A})$ with arc travel time functions $(\mathbf{t}_a)_{a \in \mathbf{A}}$ satisfying assumptions of causality, fifoness, limited speed and continuity and given a measure \mathbf{U} on the set of possible users (identified with their utility function), there is a Nash equilibrium.

(日)

Continuity of the $t_r \Rightarrow$ continuity of the utility function $u(t_r, \cdot, \cdot) \Rightarrow$ we can apply the theorem.

Theorem

Given a directed graph $\mathbf{G} = (\mathbf{V}, \mathbf{A})$ with arc travel time functions $(\mathbf{t}_a)_{a \in \mathbf{A}}$ satisfying assumptions of causality, fifoness, limited speed and continuity and given a measure \mathbf{U} on the set of possible users (identified with their utility function), there is a Nash equilibrium.

(日)

The model is really versatile and contains previous models. Playing with the map $u(\vec{t}(\vec{X}), r, h)$,

 we cover also the case when there is no possible choice of time departure.

・ロト ・ 日 ・ ・ 回 ・ ・ 日 ・

e we can put arbitrarily taxes on some routes or time departure.

They will always be a Nash equilibrium : contains previous results of equilibrium.

The model is really versatile and contains previous models. Playing with the map $u(\vec{t}(\vec{X}), r, h)$,

 we cover also the case when there is no possible choice of time departure.

・ロ・ ・ 四・ ・ 回・ ・ 回・

we can put arbitrarily taxes on some routes or time departure.

They will always be a Nash equilibrium : contains previous results of equilibrium.