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Affectation dynamique du trafic : il y a un équilibre !
avec Nicolas Wagner.
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Static traffic assignment

Supply A directed graph G = (V ,A), a cost function
ca : R+ → R+ for each a ∈ A. Assumptions : ca
is non-decreasing and continuous and G is
strongly connected.

Demand A demand function b : V × V → R+.
Realization A flow x : R → R+ where R = (Ro,d)(o,d)∈V×V ,

such that
∑

r∈Ro,d

x(r) = b(o, d), with Ro,d being

the set of all o–d route of G.
Equilibrium Whenever r , r ′ ∈ Ro,d , we have

x(r) > 0⇒
∑
a∈r

ca(xa) ≤
∑
a∈r ′

ca(xa),

where xa :=
∑

r∈R: a∈r x(r) (Wardrop ).
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Static traffic assignment : results

Theorem
There is always an equilibrium. Moreover, the values
ca
(∑

r∈R: a∈r x(r)
)

at equilibrium are unique.

Formulation as a convex program→ computable.
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Static traffic assignment : limitation

This model has a limited significance :

the time needed to travel along the route is not modelled. Each
user occupies the whole route continuously.

→ need of dynamic traffic assignment model.
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Dynamic traffic assignment

Since the 70’s, several models has been proposed, for
instance :

Vickrey (1969)
Merchant and Nemhauser (1978)
Friez and al. (1989)
90’s : Leurent (LADTA), Bellei, Gentile and Papola,
Akamatsu and Kuwahara

Roughly speaking, the models are such that
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Dynamic traffic assignment model

Time interval I = [0,H].

Users are dynamic flows : x : R × I . The quantity x(r , h) is the
number of users choosing the route r at time h.

ya : I → R+. The quantity ya(h) is the number of users
entering the arc a at time h.

Useful notation :

Xr (h) :=

∫ h

h′=0
x(r , h′) and Ya(h) :=

∫ h

h′=0
ya(h′)

(cumulated flow).
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Dynamic traffic assignment model

Supply A strongly connected directed graph G = (V ,A),
a arc travel time function ta for each a ∈ A such
that ta(Ya) is a I → R+ continuous map,
depending continuously of the cumulated flow Ya.

Demand A demand function b : V × V × I → R+.

Realization
∑

r∈Ro,d

x(r , h) = b(o, d, h) for all (o, d) ∈ V × V

and h ∈ I .
Equilibrium Whenever r , r ′ ∈ Ro,d , we have

x(r , h) > 0⇒ tr (~X)(h) ≤ tr ′(~X)(h),

where for r = a1 . . . an, we have tr (~X)(h) :=
∑n

i=1 tai (Yai )(hi)
with Yai := φai (X) and
h1 := h and hi+1 := hi + tai (Yai )(hi) for i = 1, . . . , n − 1.
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Dynamic traffic assignment

The Ya can be computed from the ta knowing all Xr (under
some assumptions).

Existence of an equilibrium ?

In general, it is an open question.
Zhu and Marcotte prove an equilibrium for Friez’s model
(with a stronger assumptions on travel time).
Ladta : Unknown.
Lindsey + Leurent, Wagner studied time departure choice
on one arc (Vickrey model) : their is an equilibrium.
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Results

Our result
• a general model with minimal assumption : continuity,

fifoness (in a weak form), causality, no infinite speed.
• existence of an equilibrium that contains all previous

results.
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Traffic assignement as a continuous game

R : set of routes, I := [0,H] time interval.

M(R × I) : set of measures on R × I (choice of time departure
allowed).
Tr : set of continuous mapsM(R × I)→ C(R,R) (tr ∈ Tr is
such that tr (~X)(h) gives the time needed to traverse the route
r ).

user : characterized by a function u :
(⋃

r∈R Tr
)
× R × I → R̄

(that is upper semicontinuous in r and h, and continuous in the
travel times, (the utility-function) : u(~t, r , h) : a choice (r , h) 7→
the payoff, when route travel times are~t := tr1, tr2, . . . ,.

U : space of users u.

A traffic game is a measure U on U . Number of users :
N := U (U).
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Traffic equilibrium

A realization of the traffic game is a measure on U × R × I .
Denote tr1, tr2, . . . by~t .

Given a traffic game U, a realization D is a Cournot-Nash
equilibrium if we have DU = U and

D {(u, r , h) : for each (r ′, h′) ∈ R × I,
u(~t(DR×I), r , h) ≥ u(~t(DR×I), r ′, h′)

}
= N

DR×I is exactly the cumulated flows X . Set
Xr (J) := DR×I({r} × J).
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Khan-Mas-Colell’s theorem ?

Khan-Mas-Colell’s theorem tells us that there is a Nash
equilibrium, provided that the utility function are continuous in
the realization of the game (=here the travel times).

For traffic assignement : DR×I 7→ u(~t(DR×I), ·, ·) must be
continuous.

Reformulation : Our purpose : prove that ~X 7→~t(~X) is
continuous.
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Arc exit time

Given ta, the arc exit time function is

Ha(Y )(h) := h + ta(Y )(h) for Y ∈M(R) and h ∈ R
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Assumptions on travel time

Continuity Ha :M(R)→ C(R) is continuous.
Limited speed there exists tmin > 0 such that for all

Y ∈M(R) and all h ∈ R, we have
Ha(Y )(h) > h + tmin.

Fifo Let h1 < h2 in R and let Y ∈M(R). Whenever
Y [h1, h2] 6= 0, we have Ha(Y )(h1) < Ha(Y )(h2).

Causality For all h ∈ R and Y ∈M(R), we have
Ha(Y |h)(h) = Ha(Y )(h).
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Arc flowing function

Let ~Ya be inM(R × R) ; the flow of users following route r and
leaving the arc a on the time subset J is :

ψr
a(~Ya)(J) := ψa(~Ya)({r}×J) :=

{
Y r

a (Ha(Ya)−1(J)) if a ∈ r
0 if not.

(1)
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Flows on routes→ flow on arcs

An outflow of ~X is a measure Ya :=
∑

r Y r
a on R such that for

every r = a1a2..an :

1 Y r
a1

= Xr

2 Y r
ai

= ψ
ai−1
r (~Yai−1) for i = 2..n

3 Y r
a = 0 if a /∈ r
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Uniqueness and continuity of the outflow

Proposition

Given ~X , there exists a unique outflow Ya. Moreover, the map
φa : ~X 7→ Ya is continuous.
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Continuity of tr is proved !

Continuity of tr is proved.
Indeed

tr (~X)(h) :=
n∑

i=1

tai (Yai )(hi)

with h1 := h and hi+1 := hi + tai (Yai )(hi) for i = 1, . . . , n− 1
can be rewritten :

tr (~X)(h) =
(

Han

(
φan(~X)

)
◦ . . . ◦ Ha1

(
φa1(~X)

))
(h)−h for all h ∈ I.
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There is an equilibrium

Continuity of the tr ⇒ continuity of the utility function u(tr , ·, ·)
⇒ we can apply the theorem.

Theorem
Given a directed graph G = (V ,A) with arc travel time
functions (ta)a∈A satisfying assumptions of causality, fifoness,
limited speed and continuity and given a measure U on the set
of possible users (identified with their utility function), there is a
Nash equilibrium.
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A versatile model

The model is really versatile and contains previous models.
Playing with the map u(~t(~X), r , h),

1 we cover also the case when there is no possible choice of
time departure.

2 we can put arbitrarily taxes on some routes or time
departure.

They will always be a Nash equilibrium : contains previous
results of equilibrium.
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